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Upwelling of a stratified fluid in a rotating annulus: 
steady state. Part 1. Linear theory 

By J. S .  ALLEN 
Department of Aerospace Engineering, The Pennsylvania State University 

(Received 28 October 1971 and in revised form 24 August 1972) 

The linear theory of rotating stratified fluids is applied to describe the steady 
axisymmetric motion of a stratified fluid in a rotating annulus for values of the 
stratification parameter B = aN2/(2Q)2 that are order one or larger: s 2 O(1). 
The motion is mechanically driven by either an applied velocity or by an applied 
stress at the top surface. The side walls are thermally insulated. Primary 
attention is given to a study of the meridional, or upwelling circulation. Simple 
analytical solutions are obtained with the aid of the narrow-gap approximation 
and a justifiable assumption of an infinite depth. In  that case the meridional 
circulation is confined to a surface Ekman layer and to a Lineykin layer of thick- 
ness of O(S-$). It is shown how the solutions for the stress-driven upwelling flow 
in the annulus apply to a two-dimensional linear model of coastal upwelling 
in t-i stratified ocean. 

1. Introduction 
A linear theory for the effect of a stable density stratification on the steady 

motion of a contained rotating fluid has been developed by Barcilon & Pedlosky 
(1967a, 7.1). Recently, Pedlosky (1970) has worked out, and investigated the 
stability of, the linear-theory solution for the mechanically driven, axisymmetric 
flow of a continuously stratified fluid in a rotating annulus, for small values of 
the stratification parameter B = C T N ~ / ( ~ Q ) ~  < O(l) ,  where (+ is the Prandtl 
number, N is the Brunt-Vaisiila frequency and Q is the rotational frequency. 

In  this paper, the linear axisymmetric steady motion of a stratified fluid in a 
rotating annulus is studied for values of the stratification parameter that are 
order one or larger: 8 2 O( 1) .  The motion is driven by either an applied velocity 
or by an applied stress on the top surface. The side walls are thermally insulated. 
Primary attention is given to a study of the meridional, or upwelling, circulation 
and the dependence of this circulation on the stratification parameter. The 
problem of applied stress driving is included for comparison with the applied 
velocity case and also because the solutions are applicable to a two-dimensional 
linear model of coastal upwelling in a continuously stratified ocean. The relation- 
ship with the oceanic model is discussed in Q 5. 

The narrow-gap approximation is employed and a simplifying, infinite-depth 
assumption, which does not affect the basic physics, is made. With these approxi- 
mations, simple analytical solutions are obtained for particular, but illustrative, 
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forms of the applied velocity or stress. These solutions are presented for a top- 
surface boundary condition on the perturbation temperature, but the differences 
in the solutions, when the temperature boundary condition is one of an applied 
heat flux, are discussed. 

This investigation was undertaken to help explain the results of some numeri- 
cal finite-difference solutions of the steady, axisymmetric, mechanically driven 
motion of a stratified fluid in a rotating annulus. The purpose of that study, 
which will be presented in a subsequent paper as part 2 (Allen 1972), was to 
investigate the nature of the flow when the Rossby number has finite values and to 
calculate axisymmetric solutions as forerunners of the computation of more 
complex three-dimensional flows. Many features of the flow, predicted here by 
the linear theory, have appeared in the finite Rossby number numerical solutions. 

2. Formulation 
We consider a viscous heat-conducting incompressible fluid, which satisfies 

the Boussinesq approximation, in a frame of reference rotating with a uniform 
angular velocity !2 = sZ& and acted on by a gravitational acoeleration g = - gfc 
which is antiparallel to the rotation vector. The governing equations for steady 
motion are v.q = 0, 

4 * vq + 2Qk x q = - ( i /Po)VP - (P/PO)Sfc 
+ &(p/po) fi2v/k x rl2+ vvsq, 

q . VT = K Q ~ T ,  

P = POP - 4 T  - Toll, 
where q , p ,  p and T are respectively the velocity, pressure, density and tempera- 
ture of the fluid at point r; Y ,  K and cc are respectively the constant kinematic 
viscosity, thermometric conductivity and coefficient of thermal expansion; po 
and To are constant reference values of the density and temperature; & is a 
constant unit vector in the z direction in Cartesian co-ordinates. 

We assume that the Froude number fi2ro/g, where ro is a characteristic radial 
distance from the centre of rotation, is small and consider a linear equilibrium 
temperature and density distribution (see Greenspan 1968, Q 1.4) given by 

T, = To+AT0z/H, ps = po[l -aAT0z/H], 
where ATo( > 0) is the basic temperature difference imposed over the height H .  

The variables are non-dimensionalized in the following manner: 

q = Uq*, 
p = po-pogHz*+~pogHaAToz*2+poUQHp*, 

r = H r * ,  

5!l = T,+ (fiU/w)T*7 P = Ps+ (Po UQ/g)p*, 

where p o  is a constant reference pressure and U is a reference applied velocity. 
If the motion is driven by an applied stress T, then we assume 7 = T~T*, where 70 is 
a reference value of the applied stress, and we define U = HTo/Pov so that the 
dimensionless interior velocities are of O(1) for >, O(1). 
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For small Rossby number E = UlQL, such that the nonlinear terms multiplied 
by E can be neglected, the resulting dimensionless equations are (dropping the 

2 L x q  = -Vp+TL+EV2q,  (2.1b) 
asterisks) v.q = 0, ( 2 . 1 4  

48q. L = EV2T, ( 2 . 1 4  

where E = v/QZH2 is the Ekman number, cr = V / K  is the Prandtl number. 

N 2  = agAT,/H 

is the square of the Brunt-Vaisala frequency, S = N2/Q2 and 8 = &nY. Following 
Barcilon & Pedlosky (1967 b )  we shall call 8 the stratification parameter. The 
Ekman number E will be assumed to be small and boundary-layer methods for 
the limit E -+ 0 will be used. 

The axis of the annulus is aligned with the basic rotation vector. The narrow- 
gap approximation is used, that is, it is assumed that the distance between the 
cylindrical side walls is small compared with the mean radius of the annulus. 
This permits the neglect of the effects of curvature and allows the use of Cartesian 
co-ordinates (x, y, z )  with unit vectors (1,3,f). The z co-ordinate direction 
(vertical direction) is parallel to the axis of the annulus. The x axis is aligned in 
the radial direction and the y axis is aligned in the azimuthal direction so that, 
for axisymmetric motion, the flow quantities are independent of y. The side walls 
of the annulus are vertical and the top and bottom surfaces are horizontal. The 
origin of the co-ordinates is placed in the plane of the bottom surface so that the 
fluid is contained in a section (0 < x < 1, 0 < x < l), where the width has been 
taken equal to the depth for simplicity. 

In  Cartesian co-ordinates, with velocity components (u, w, w )  in t,he (2, y, z )  
directions, and with 8/8y = 0, equations (2.1) become 

or 

or 

where we assume 

u, + w, = 0, 

-2v = -pX+(EV%), 
2~ = E V ~ V ,  

0 = -pz + T + ( E V W ) ,  
4EJw = E V T ,  

(2.2a) 
(2 .2b )  

( 2 . 2 c )  

( 2 . 2 4  

(2.2e) 

where the subscripts denote partial differentiation and V2 = 8218x2 + P/az2. 
The parentheses mark terms that will be neglected in $3, for the interior flow, 
and the set of equations with these terms neglected will be referred to as (2.2N). 

(2 .3a ,b)  

(2.3c, d )  
( 2 . 4 ~ )  

( 2 . 4 b )  

(2.5a) 

( 2 . 5 b )  

The boundary conditions are 

q ( x  = 0 )  = q ( x  = 1) = 0, T,(x = 0) = Tx(x = 1) = 0; 

q(z = 0) = 0, T(z  = 0) = 0 [or T,(z = 0) = 01; 

q ( z  = 1) = VT'T(43, 
e ( z  = 1) = T r ( 4 . j ;  

T ( z  = I) = TT(x), 

T,(z = 1) = T,,(x); 
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3. Analysis 
We consider initially the case B = O( 1).  As was shown by Barcilon & Pedlosky 

(19674,  for applied velocity driving, the lowest order interior flow, in an expan- 
sion in powers of E4, is governed by the diffusion equation 

VZ&. v x q + @-IT,) = 0, (3.1)  

where in general V2 is the full three-dimensional Laplacian operator. A governing 
equation for the lowest order interior pressure results from (3.1) and is 

( 3 4  vz(Bvg + a21a22)p = 0, 

where V& is the horizontal Laplacian operator. The same equation holds if the 
driving is by an applied stress. In  our case, (3.2) corresponds to the assumption 
that the interior flow is governed by the balances shown in (2.2) with the terms in 
parenthesis neglected (equations (2.2N)).  Combining (2.2N), we find that 

which corresponds to (3.2) with slay 3 0. We use the notation 

v; = (Ba21ax2 + a21a.q. 

Barcilon & Pedlosky ( 1 9 6 7 ~ )  also showed that, with applied velocity driving, 
Ekman layers are absent to the lowest order and the interior O(1) horizontal 
velocity must itself satisfy the boundary conditions on the top and bottom SUP- 

faces. This, along with a boundary condition on the temperature or heat flux, 
gives two boundary conditions for the pressure at the horizontal surfaces. The 
boundary conditions on the interior variables at the vertical side walls were also 
derived. With insulated boundaries a buoyancy layer is not present, to lowest 
order, and in the axisymmetric case the interior velocity components v and u 
must satisfy the conditions v = u = 0 a t  the side walls. In  terms of the pressure, 
tihese conditions are 

pz(x  = 0 , i )  = pzzz(x = 0 , l )  = 0. (3.4) 

The vertical component of velocity, w, derived from the solution to (3.3) will not 
in general satisfy the side-wall boundary condition (2.3a) and will adjust in a 
thin higher order buoyancy layer that does not affect the lowest order interior 
flow. 

With the boundary condition (3.4) the solution of (3.3) can be written in the 
form 

p = C C Cineqns cosn~x,  (3.5) 
n=l i=l 

- 
(3.6a, b )  where C C ~ , ~ ~  = nn-, C C ~ , ~ ~  = S4nn. 

It is clear that the two sets of roots (3.6u, b)  correspond respectively to solutions 
of the two equations V2p = 0 and VLp = 0. It is also clear, since 

w ( 4  1 

(3.7) 
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where d stands for the dimensionless depth (d = 1 in this case), that the solutions 
will be primarily determined by the boundary conditions on the top surface and 
that the homogeneous conditions (2 .3c ,  d )  on the bottom surface will only result in 
relatively small corrections. Consequently, a great deal of simplicity, with no loss 
of the essential physics, is obtained if we consider the annulus to be of infinite 
depth. The characteristic length H is assumed to remain unchanged and repre- 
sents the distance over which the basic temperature difference AT,, is imposed; it 
naturally loses its significance as the depth of the annulus. 

The solution can then be written as the sum of two parts: 

where 

P = PI + P L ,  ( 3 . 8 ~ )  

(3 .8b)  
00 

p I  = ;r: CIn exp [ - nn( 1 - z ) ]  cos nnx, 
n=l 

03 

p L  = c C,, exp [ - nnS*(i - x ) ]  cos nnx. ( 3 . 8 ~ )  

The solution (3.8) remains vaIid for O(1) < 8 < O(I3-l) and from this point on 
we consider 8 to be in that range. The second part of the solution is limited, for 
large values of S, to a boundary layer on the top surface of thickness of O(8-4). 
This part of the solution represents a Lineykin layer (Lineykin 1955; Leetma 
1971). We point out that, since VzpI = 0, it follows that V2vI = V2TI = 0 and, 
consequently, from ( 2 . 2 N )  that uI = wI = 0. Therefore, a non-zero meridional 
circulation, uL and w,, is associated only with the Lineykin-layer part of the 
solution. Note also, from (2.2N) and the relations V2pI = V:pL = 0, that 

VIZ = +TIZ, VIX = - P I z ,  ( 3 .9a )  

vLZ = 4TLz, vLX = - +fJ-lTLz, (3 .9b )  

and therefore that the pairs (v,,&TI) and (A!&,,~T~) are conjugate harmonic 
functions in the variables (2, z )  and (x ,  A!%), respectively. 

n= 1 

- 

3 .  I. Applied velocity-applied temperature 

For the case where the boundary condition on the top surface is one of an applied 
velocity (2 .4a )  and an applied temperature (2 .5a ) ,  the boundary values can be 
expanded in Fourier series of the form 

03 03 

V,(X) = 2 VTnsinnnx, TT(x) = C TTnc0snnx. (3 .10a ,  b )  
n=l n = l  

Using (3 .10)  and applying the boundary conditions 

p X (2 = 1) = 2vT, pz(z = 1) = TT, (3.11 a, b )  

we h d  that the series solution (3 .8 )  is determined, with 

C,, = - (nT)-'( I -B-3)-'(2VTffl 8-*T,n), (3 .12a)  

cLn = (nr)-'Bd(1 - g-&)-'(2vTn + TTn). (3 .12b)  

For B = 1, the two sets of roots (3 .6a ,  b )  coincide. The solution is given by the 
limit, as B+ 1, of (3 .8)  and (3 .12) ,  or it may be obtained by assuming 8 = 1 at the 
outset and using standard methods for equal roots. 

28 FLhr 56 
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If the top-surface boundary conditions have the particular, but illustrative, 
form 

(3.13 a, b) 

where Do and D, are constants (0 < Do < 1, D, = ~fi l),  then the series solutions 
for v = vI + vL and T = TI + TL, which are obtained from (3.8), can be summed to 
give the analytical expressions 

V I  = 2K0(D0Vp + (1 - Do)vy))) 
V L  = - 2K0s-*(D0vp + (1 -Do)vQ'), 

v$O) = tan-, [sin nxlsinh n( 1 - z ) ] ,  

Vr = D,[Do + (1 - D ~ ) x ] ,  TT = 0, 

(3.14 a) 
(3.14b) 

where KO = D,n--'( 1 - s-*y, 
( 3 . 1 5 ~ )  

1 exp [ - n( 1 - z) ]  sin n-x 
1 + exp [ - n( 1 - z)] cos nx ' 

vi1) = tan-1 (3.15b) 

v p  = V $ q X ,  &( 1 - z) ] ,  v p  = vy'[x, Eli( 1 - z ) ] ,  (3.15c)d) 

(2.16a) 

(3.16b) 

( 3 . 1 7 ~ )  

(3.17b) 

(3.17 c) 

It is easily shown that a stream function for the meridional flow, such that 

and TI = - 4K0[D0T$') + $( 1 - Do)Ty)], 

TL = 4K0[D0Tj;O) + &( 1 - D0)T2)], 
Tio) = tanh-l [cos n-xlcosh n( 1 - z ) ] ,  

Ty) = ln {l + 2 exp [ - n-( 1 - z) ]  cos nx + exp [ - 274 1 - z)]), 

where 

Tg) = T$')[x, S*( 1 - z)], 

and w = - $=, is given by the relation 

T2) = T~)[x,  fB( 1 - z)]. 

u = 

$ = +E(I - g - 1 ) ~ ~ ~ .  (3.18) 

With the boundary conditions (3.13a)b) the solution for $, from (3.18) and 
(3.14b), is 

Do sin n-x cosh n-s+( 1 - z )  

sinh2 [n~!@( 1 - z ) ]  + sin2 n-x 
$ =  -E(l+S-&)D, 

The expression (3.19) is unbounded for z = 1, x + 0, 1,  which emphasizes the fact 
that the interior solutions (3.14) and (3.16) are not valid in small regions near the 
corners. The corner regions will be discussed in more detail in $4.  

The stream function @ (3.19) gives a solution for the meridional circulation in 
the Lineykin layer. This circulation must be completed in an Ekman layer on 
the top surface. Thus, although the Ekman layer certainly does not control the 
dynamics and, in fact, for these boundary conditions, is essentially driven by 
the interior and Lineykin-layer solutions, it does play an important role in the 
meridional circulation. 

It is useful, at  this point, to think in terms of a perturbation analysis for 
s > O( 1) and to consider the solution, away from the corner regions, to be made 
up of three parts. The first two parts, denoted by subscripts I and L, are already 
included in our general interior solution and henceforth will be referred to as the 
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interior and Lineykin-layer solutions, respectively. The third part is the solution 
for the correction variables in the Ekman layer and will be denoted by a sub- 
script E.  The scaling of the lowest order terms with V, + 0, as can be checked 
from (3.12) for the interior and Lineykin-layer variables, is 

(3.20) 1 
TI = O( l),  TL = O( I) ,  

W z  = 0(1), WL = o(%$), W E  = O(E*), 

U E  = O ( E i ) ,  
wE = O(E). 

U L  = O(ES*),  

W ,  = O(E), 

The Ekman-layer scaling is determined by the requirement that the vertical 
velocity W ,  should match the vertical velocity wL of the Lineykin layer at x = 1. 
If the problem were solved by perturbation methods, the terms that would be 
retained in the Lineykin-layer equations would correspond to (2.2N) with 
V 2  -+ a2/az2. The governing equations for the interior and Lineykin-layer variables 
would be equivalent to V2pI = 0 and VgpL = 0, respectively, and each would 
require only one boundary condition at the top surface to determine the solution. 
The order that would be followed in the application of the boundary conditions 
at  x = 1 is 

wI = V,, 
TI + TL = TT, 

which determines the interior solution I ;  

which determines L;  
w,sw, = 0. 

We note that wE is determined by the Lineykin-layer solution for wL. A complete 
solution for the Ekman layer, however, apparently depends on an analysis of 
the flow in the corner regions. Note that, as can be checked from (3.19), 

W E  = -wL(z = 1) 

is not related to the Ekman-layer suction velocity that would exist in a homo- 
geneous fluid in a finite-depth annulus with the same applied velocity. This is 
different from the case with an applied stress driving in $3.2. 

The solutions (3.14), (3.16) and (3.19) are presented, for one set of parameter 
values, in figure 1 in the form of contour plots of the azimuthal velocity w, the 
total temperature = z + (E/S)T, and the stream functian $. The values of the 
parameters for the case presented are S = 1.925 (corresponding to B = 7 and 
X = l a l ) ,  c = 0-1 and E = 0.0005, and correspond to a set of parameters used in 
the numerical experiments in part 2 (Allen 1972). In  addition, the finite value of 
E = 0.1 accentuates, and therefore shows clearly, the distortion of the isotherms. 
The constants in the applied velocity boundary condition (3.13) are Do = 0-5 and 
D, = - I and this corresponds to a motion of Che top surface in a sense opposite to 
the basic rotation. As a result, there is an upwelling of the fluid at  the outer side 
wall (x = 1) and a downwelling a t  the inner wall. 

The contours of w and $ are plotted at  equal intervals, between the maximum 
and minimum values of the variables (listed in the figure caption) in a field which 
is limited to a depth d = 1 (i.e. 0 < z < 1). Note that, with the choice of Rossby 
number E = 0.1, the total temperature has, unrealistically, a maximum value 

28-2 
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1' 7' @ 
FIGURE 1. Contour plots of the zonal velocity w, the total temperature F = z+  (E/LS)T and 
the stream function$, for appliedvelocitydriving (3.13) (see $3.1) with Do = 0.5, D, = - 1, 
s = 1.925, E = 0.1 and E = 0.0005. The maximum and minimum values in the field 
(0  < 2 < 1, 0 < z < 1) and the intervals at which the contours are plotted are w,,, = 0, 

z = 1) = 27.5 x lo-*, @& = 0, A$ = 2.75 x lo-*. The origin (x: = 0, z = 0 )  is a t  the 
lower left-hand corner of the plots. w and $ are plotted at  equal intervals between the 
maximum and minimum values. T is plotted at intervals of AT = 0.105 from !i' = 0.105 
t o  !i' = 0,840. 

- 
v,, = - 1.0, AW = 0.1; T,, = 1.039, Fdn = -0-012, AT = 0.105; $mm = @(% = 0.9, 

greater than one. Because of the singularity of the stream function in the corners, 
the maximum value of @ was arbitrarily taken as $,,, = @(x = 0.9, z = 1). For 
the purpose of making the contour plots, the values of the solution were calcu- 
lated on a uniform rectangular grid with 50 and 64 points in the x and z directions 
respectively. 

The plot of v shows the linear decrease of the applied velocity across the top 
surface and the nature of the penetration of the surface velocity into the interior. 
The plot of the isotherms for clearly illustrates the effects of upwelling and 
downwelling in the corners. The meridional circulation in the Lineykin layer is 
shown in the plot of the stream function. This circulation is seen to be dominated 
by intense recirculating eddies in the corners, caused, apparently, by the effect of 
the non-zero values at x = 0 , l  of the applied velocity on the top surface. Even at 
this moderate value of f l  = 1.925 most of the transport in the meridional recircu- 
lation occurs near the top surface. For increased values of B the Lineykin layer 
decreases in thickness and the circulation crowds closer to the top surface. This 
circulation pattern should be compared with that which would exist in the 
original finite depth annulus if the fluid were homogeneous. In  that case, the 
meridional circulation in the interior would involve a downward depth-inde- 
pendent vertical component of flow between Ekman layers on the top and 
bottom surfaces. There would also be downward flow in boundary layers of 
thickness Ef and E )  on the inner (x = 0 )  side wall. The circulation would be 
closed by an upwelling of the fluid, from the bottom surface to the top, in vertical 
E i  and Ef layers on the outer side wall. 

3.2. Applied stress-applied temperature 

There are several differences in the solution when the boundary condition is one 
of an applied stress (2.4b) rather than an applied velocity (2.4a). These can be 
seen from a consideration of the sequence followed in applying the boundary 
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conditions. The lowest order scaling for the variables, in a perturbation problem 
with f? > O( 1)  and TT + 0, is the same as ( 3 . 2 0 ) .  The boundary conditions a t  x = 1 
are satisfied by the relations 

vI.z + vLz + vEz: = rT,  ( 3 . 2 1 a )  

( 3 . 2 1 b , c )  

Combining (3 .21 a, b )  and using ( 3 . 9 a ,  b )  we find that the order of application of 
the boundary conditions is 

TI + TL = TT, W E  + WL = 0. 

vEZ = i-T - $TTx, which determines E ;  
which determines L; 
which determines I .  

w,+w, = 0, 

TI + T' = TT, 

The Ekman-layer solution is driven by the quantity rT - iTTx, as was pointed 
out by Leetma (1971). If TT, = 0, the Ekman-layer suction velocity is the same 
as that which would exist in a homogeneous fluid. The Ekman-layer and Lineykin- 
layer solutions, and thus the components of the meridional circulation, are 
determined independently of the interior solution, as was shown in a different 
manner by Blumsack ( 1 9 7 2 ) .  

The above results hold for IF 2 O( 1) and are needed to determine the solution 
( 3 . 8 ) .  The Ekman-layer suction condition a t  z = 1 is, in this case, 

W ,  = - &E(rT - $TTx)z. 

From ( 3 . 1 8 )  we obtain 

The substitution of ( 3 . 2 2 )  and (3 .23)  in ( 3 . 2 1 ~ )  yields 

wL = - iE(l-f l - l )vLzx.  

( 3 . 2 2 )  

( 3 . 2 3 )  

- 
vLZz(x = 1) = - (1 - #-l)-l(rT - iTTx)x. ( 3 . 2 4 )  

The surface stress is expanded in a Fourier series of the form 

a 

n = l  
TT = C, rTnsinnnx ( 3 . 2 5 )  

and the surface temperature isgiven by ( 3 . 1 0 b ) .  Conditions ( 3 . 2 4 )  and (3 .21  b)  are 
then sufficient to determine the constants in the solution ( 3 . 8 )  : 

CI, = - (n7r)-2( 1 - f l - ' ) - ' ( 2 ? ~ ~  + (nn)B-'TT,), ( 3 . 2 6 ~ )  

c ~ ,  = (nn)-2fi?-$( 1 - 8 - ' ) - ' ( 2 r ~ ~  + (%n)TTn). (3 .26  b )  

We note that the series representations ( 3 . 1 0 b )  and ( 3 . 2 5 ) ,  when substituted in 

= 0. ( 3 . 2 7 )  

Therefore, in the case of a non-vanishing effective stress T T  - QTT, at x = 0,1, 
the derivative of the Fourier series of ?-T-+TTz in ( 3 . 2 2 )  must give the correct 
singular behaviour in the vertical velocity, at x = 0,1, to make the net integrated 
mass flux ( 3 . 2 7 )  equal to zero. 

( 3 . 2 2 ) ,  lead to the result 

If the boundary conditions have the form 

TT = Di[Do+ ( 1 - D 0 ) ~ ] ,  TT = 0, ( 3 . 2 8 a ,  b)  
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V T + 
FIGURE 2. Contour plots of v, and p for applied stress driving (3.28) (see $3.2) with 
Do = 0,  D, = - 1, 8 = 1.925, E = 0.1 and E = 0.0005. The maximum and minimum 
values and the intervals at  which the contours are plotted are v,, = 0, wUmin = -0.119, 
Av = 0.012; Tmx = 1.0, Trnh = 0, AT = 0.1; pmin = 0, A$ = 0.23 
x 10-4. v, !i' and @ are plotted at equal intervals between the maximum and miniinurn 
values. 

- 
= 2.3 x 

then the series solutions for (wI + wL)a and (TI + TL)B can be summed. In terms of 
(3.15) and (3.17) we obtain 

(3.29 u)  W I Z  = 2K1(D0 w p  + (1  - Do)v:l)), 
(3.293) 

TI, = -4K1(D0T!O)+9(1-D0)T!1)), ( 3 . 3 0 ~ )  

TLz = 4 K , & ( D 0 T ~ ) + 4 ( l  -D,)Tf)) ,  (3.30 b )  

where Kl = D,7r-'( I - S - y .  

The stream finction can be calculated using (3.18) : 

11. (3.31) 
exp [ - T&( 1 - z ) ]  sin 7rx 

I + exp [ -7~S+(1-  x ) ]  cos ~ T X  
+ (1 - D,) tan-l 

Contour plots of w, and $ are presented in figure 2 for the case where Do = 0 
and D, = - I.  The other parameter values are the same as those used in $3.1 for 
the plots in figure 1. The temperature field T was obtained by numerically 
integrating (3.30a,b), with the same grid spacing as that used in $3.1,  from 
z = 1 t o  x = 0, using the boundary condition (3.21b) a t  x = 1. The velocity field 
was obtained by using (3.9a, b )  and numerically integrating (3.30u, b )  from 
x = 0 to x = 1, using the boundary condition w(x = 0) = 0. The condition 
w(x = 1)  N 0 was recovered at x = 1.  The values of the stream function (3.31) are 
finite and the maximum value occurs in the corner z = 1, x+ 1. For the plot, 
however, we used $-,,, = $(x = 0.94, z = I ) .  

The Lineykin-layer circulation, in this case, is characterized by concentrated 
upwelling in the corner (x = I ,  x = 1)  where the applied stress has a non-zero 
negative value. The fluid then flows from the corner out towards x = 0 in the 
surface Ekman layer, where it is returned at  a uniform rate, corresponding to the 
linear variation of surface stress, to the Lineykin layer. The nature of this 
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circulation, which has no side-wall boundary-layer character at all, is clearly 
shown in the plot of @. 

The zonal velocity v has a maximum absolute value on the top surface, z = 1, 
at a value of x that apparently depends on the particular stress distribution. For 
the case of a uniform stress, Do = + 1, D, = - 1, the solution is symmetric about 
x = 0.5 and the maximum absolute value of v naturally occurs a t  x = 0.5. For 
the case in figure 2, the position of the maximum absolute value, which is found 
by using (3.9a, b)  and identifying the point where v,(z = 1) = 0, is x = $. The 
distortion of the isotherms of the total temperature TT is relatively slight. For 
these parameter settings the upwelling circulation in the stress-driven case is 
weaker than in the velocity-driven case of figure 1. 

3.3. Applied velocity-applied heat $ux 
In  the case where the boundary conditions for an applied velocity ( 2 . 4 ~ )  and an 
applied heat flux ( 2 . 5 b )  are used, the scaling, for a perturbation solution, is 

TI = 0(1), TL = O(S-*), 

(3.32) 

The solution is determined by the application of the boundary conditions in the 
sequence 

vI = vT, which determines I ;  

which determines L; TI, + TLz = T,,, 
W L f w E  = 0. 

Compared with the applied velocity-applied temperature case of $3.1, the 
Ekman- and Lineykin-layer solutions are weaker in magnitude by O(S-4). 

3.4. Applied stress-applied heat flux 
For applied stress (2.4b) and applied heat flux (2.5b) boundary conditions, the 
scaling, in a perturbation analysis, is the same as (3.32). The order in which the 
boundary conditions are applied is 

vI, = ?-T, which determines I ;  ( 3 . 3 3 ~ )  

TI, + TLz = TTz, which determines L; (3.33b) 

W L f W ,  = 0. (3.33 c )  

The surface stress is balanced directly by the interior velocity, in contrast to the 
applied stress-applied temperature case of $3.2, where it is balanced by the 
Ekman-layer component. Compared with the solution in $3.2, the Ekman- and 
Lineykin-layer components are smaller in magnitude by O(S-*). 

In  this problem, and that in $3.3, the general series solution (3.8) is easily 
determined by applying the appropriate boundary conditions (2.4) and (2.5). 
Analytical solutions are again obtainable for velocity and stress driving functions 
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of the form (3 .13a)  and ( 3 . 2 8 ~ ) .  For this case, it can be shown from the series 
solution (3.8) that, if TTz = 0, 

W&(Z = 1) = $E( I f s-B)g-47T,. 
Thus, although the surface stress is balanced by the interior velocity, the Ekman- 
layer normal velocity is still related, albeit in an indirect manner and with a dif- 
ferent proportionality constant than in $3 .2 ,  to the curl of the applied stress. 

4. Corner region 
The solutions obtained in $ 3 are not valid in small regions in the corners x + 1, 

x --f 0 , l .  In fact, the interior and Lineykin-layer solutions may be singular a t  the 
corner points as was mentioned in connexion with (3.19). For B < O( l), the corner 
regions have the familiar scaling 8, = 8, = O(E4) and, to lowest order, the effects 
of stratification are not important. For B = O ( l ) ,  the x and z scaling remain the 
same, but the effects of stratification are important. In  this case, all the terms in 
(2 .2 )  have to be retained. For 8 > 0(1), however, a scale analysis shows that an 
E4 x EB corner region is not present and that it is replaced by two regions with 
scaling 

(i) 8, = O(E$B) ,  8, = O(E*), ( 4 . l a )  
and 

(ii) 8, = 8, = O(E*BA). (4.lb) 

Only the case B > O(1) will be considered here. In  corner region (i), the terms 

ux+w, = 0, ( 4 . 2 ~ )  

(4.2b, c )  

in (2 .2 )  that enter in the lowest order balance are 

- 2v = -px + Eu,,, 2~ = Ev,,, 

O = - p + T  , 4 8 ~  = ET,. ( 4 . 2 d , e )  

Equations (4 .2 )  are essentially just a combination of the Ekman- and Lineykin- 
layer equations and the terminology Ekman-Lineykin corner region will be used. 

Corner region (ii) has the same scaling (4.1 b )  as the buoyancy layer (Barcilon & 
Pedlosky 1967b) and will be called the buoyancy corner region. In  the lowest 
order balance in this region, all the terms in (2.2 a, c, d, e) enter and (2 .2  b)  becomes 

We shall examine the solution in the corner at x = 1, z = 1 only for the applied 
stress-applied temperature case of $ 3.2.  Because of the singular behaviour of the 
Lineykin-layer solution at the corners, it  is advantageous to abandon the use of 
correction variables and to consider the Ekman- and Lineykin-layer parts of the 
solution to be represented by a separate expansion which is valid in a region 
aroundx = 1, z = 1.  

For the Ekman-Lineykin corner region (4.1 a),  the variables are stretched and 
expanded in the following manner: 

0 = -p,+EV2u. 

[ = (I  -x) E-*B-*, 5 = ( I  -z)E-*; 

u = EhO([, 5) + . . ., v = E h o +  ..., w = E48-*w0+ , .., 
T = E@tT,+ ..., p = E84poi- ... . 



Strati$ed Juid in a rotating annulus. Part 1 44 1 

It is advantageous to introduce a stream function $o (Blumsack 1972) such that 
uo = - $oe, wo = $ot, i.e. $ = E$.,(C, <) + . . . . One equation for $, can be derived 
from the scaled form of (4.2) and is 

The boundary conditions for (4.3), at p = 0, come from the relations 

$(z = 1) = 0, u, = $,,(z = 1) = 0, (4.4a, b )  

(4.4c) 

Condition ( 4 . 4 ~ )  will force a $ of magnitude $ = O(6;E-l) = O(E) ,  which is con- 
sistent with our scaling and with the magnitude of the interior value (3.31). The 
resulting boundary conditions for $o are 

$ O K  = 0) = $ocgK = 0) = 0, (4.5a, b )  

+,zzz(~ = 1) = - E-‘~(v,- +T,) = - E-l2(7T - +TT2). 

$ocgg&b = 0) = - 2I?T@ = 1) - BTT,(% = 111, 

$o(g = 0)  = 0. 

(4.5c) 

( 4 . 5 4  

In  addition, we require that $o(g+oo) be bounded and that $o(c+ co) -f 0. 
For the buoyancy corner region (4.1 b ) ,  an equation for the stream function, 

which is also of sixth order in z, can be derived and boundary conditions from 
(4.4) are again applicable. However, in this case ( 4 . 4 ~ )  onlyrequires $ = O(Eg-l), 
which is smaller than O(E) .  The boundary conditions at x = 1 will be homogeneous 
and, evidently, an O(E) stream function will not exist in the buoyancy corner 
region since it is not required by the boundary conditions at the surfaces or by 
the matching with $o(E, 6) .  Consequently, in this problem the buoyancy corner 
region is not involved in the determination of the lowest order stream function. 

We note that an unscaled form of (4.3) could be easily solved, with the appro- 
priate boundary conditions, for 0 < x < 1 with the use of a Fourier sine series in x. 
The solution should give a uniformly valid approximation for the total meri- 
dional circulation. 

The solution to (4.3), with boundary conditions (4.5) and with T, = 0, can be 
obtained with the aid of a Fourier sine transform in g and is 

where 
47T(X = 1) 

@O(CY 4 = - n 4 A 4  + 4) [l-exp( -&A(h4+4)4fS)]. (4.7) 

For 5 9 1, (4.6) can be evaluated approximately by contour integration and the 
use of Laplace’s method along the imaginary h axis. The result is 

+, M - T ~ ( x  = l)n-ltan-l([/<). (4.8) 

For 6 9 1 and 6 = O( 1), contour integration can be used for the &st part of (4.7) 
and Laplace’s method can be applied directly to the second part to give 

(4.9) $o M - T ~ ( X  = 1)[-*e-ccos<+n-ltan-l(g/;/5)]. 
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The expressions (4.8) and (4.9) match with the Ekman-layer solution and with 
the stream-function solution (3.31), when it is expanded for (1-2)  < 1, 
84(1-z) g 1. The behaviour (4.8), where the streamlines lie along the straight 
lines </c = constant, can be seen in figure 2 and is the same as that derived by 
Blumsack (1972), for B < O(l) ,  in a region that corresponds, in our case, to 
O(E4B-4) g 1 - x  < O(g-*), 1 -x < 1. Note that this local behaviour is indepen- 
dent of the distribution of the stress and depends only on the fact that 

T T ( X  = 1) * 0. 

For the applied velocity-applied temperature boundary condition (3.13) in 

$r(z = I )  = -E(l  +~-~)Dl[Do(sin7i-x)-1+(1-Do)~sinrx(l+cosrx)-1], (4.10) 

which is unbounded a t  x = 0 , l .  Expanding (4.10) for 1 - x < 1 and substituting 
1 - x = O(E*S*), we surmise that the magnitude of the maximum value of @ will 
have a dependence on the parameters of the form @ = O[E@b( 1 + A!?*)]. This is 
greater than the estimate $r = O[E( 1 +IF-*)] obtained for 0 < x < 1, and reflects 
the strength of the recirculating eddies near the corners. 

An important point to note about the Ekman-Lineykin corner region is that 
horizontal diffusion terms are not included in the primary balances. This is in 
contrast to the E* x E* corner region, for s < O ( l ) ,  where horizontal friction 
terms are definitely important. Apparently, for strong stratification > O( 1) 
the presence, in the surface Ekman layer, of a vertical boundary is felt through 
the effects of horizontal temperature and pressure gradients. As a result, for 
8 > O( l), horizontal diffusion plays no direct role in the lowest order upwelling 
circulation with applied stress-applied temperature driving. Horizontal diffusion 
remains important, of course, in the balances involving the interior flow com- 
poneiit. 

$3.1, the stream function (3.19) at x = 1 is 

5. Coastal upwelling models 
Linear two-dimensional steady-state models of coastal upwelling in a con- 

tinuously stratified ocean with uniform rotation have been considered by 
Leetma (1969; see also 1971), Hsueh & Kenney (1972) and Blumsack (1972). 
The results of the analysis of the stress-driven annulus flow in 3 3.2 apply to these 
upwelling models and provide useful explicit solutions in a parameter range not 
previously considered. The relationship between the annulus flow and the oceanic 
models is discussed below. 

If constant eddy coefficients are used to represent turbulent exchange pro- 
cesses, then linear equations which are similar to (2.2) arise in two-dimensional 
models of coastal upwelling (with the two dimensions being in a plane normal to 
the coast) in which the /3-effect is neglected. The main difference in the problem 
formulation comes from the fact that the oceanic motions have characteristic 
vertical scales H which are much smaller than the characteristic horizontal 
scales L and also have vertical eddy coefficients, for momentum A, and for 
apparent temperature K,, which differ in magnitude from the horizontal eddy 
coefficients A, and KH. 
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In  forming dimensionless equations for the ocean models, therefore, the pro- 
cedure is similar to that used in arriving at (2.2) with the exception that the 
horizontal co-ordinates (x, y) and velocity components (u, v) are non-dimensiona- 
lized with L and U ,  respectively, whereas z and w are non-dimensionalized with 
H and UHIL. The resulting linear dimensionless equations are 

u,+wz = 0, (5.1 a) 

- 2 ~  = - ~ , + E ~ u ~ , + E ~ ~ , , ,  (5.16) 

( 5 . 1 ~ )  

(5.1 d )  

2~ = EH vZx + Ev vZz, 

0 = -p, + T + S2EH w,, + S2Ev w,,, 

( 5 . l e )  

where S = H/L,  E, = AH/QL2, Ev = Av/QH2, uH = A,/KH and uV = Av/Kv. 
Since S < 1, (5.ld) results, for almost all flow regions, in a hydrostatic balance. 

The similarity with the annulus case depends on the assumption that uv = uH 
and is most easily seen if the characteristic vertical scale H is chosen so that 
Ev=EH, i.e. H=L(Av/A,)*. Equations(5.1) thenreducetothesameformas(2.2) 
with 48S2 replacing 48 in (2.2e) and S2EH replacing E in (2 .24 .  This is essentially 
the set of equations that was used in the previously mentioned papers to study 
the steady motion, induced by an applied stress and temperature, near a single 
thermally insulated, vertical coast. Leetma (1969) neglected the effects of hori- 
zontal diffusion entirely in a kite-depth model where the depth d was in the 
range < d < S84. Hsueh & Kenney (1972) examined the steady response of a 
stratified fluid of infinite depth to a single Fourier component of the applied 
stress which vanishes at  the coast. Blumsack (1972) considered an infinite-depth 
model for d28 < O(l) ,  with a non-vanishing stress a t  the coast, and obtained a 
solution for the stream function in terms of Fourier transforms. Approximate, 
locally valid, analytical expressions were given for three regions of the flow near 
the upwelling corner. 

Since, for the annulus flow with 8 2 O( l), the term V2w in ( 2 . 2 4  does not enter 
in the determination of the interior or Lineykin-layer solutions, the dimensionless 
equations that are solved are the same as those used in the oceanic models. The 
annulus solutions, therefore, transform directly to solutions of the oceanic 
model, with S28 2 O(1), if the following substitutions are made: E+E, = E,, 
B+Sz8 = (A,/A,)S, H -+ L (for the non-dimensionalization of the horizontal 
co-ordinate), H -+ L(A,/A,)* and U+ U(Av/A,)Q (for the non-dimensionaliza- 
tion of the vertical co-ordinate and the vertical velocity). The series solution 
(3.8) can be used for finite- or infinite-depth cases in which a fluid of semi- 
infinite horizontal extent is adjacent to a single coast if the driving is assumed 
to be periodic. Although the analytical solutions (3.29)-(3.31) correspond, 
when extended periodically, to discontinuous stress distributions, they are 
useful in giving an explicit example of how the corner behaviour (4.8), caused 
by a non-vanishing stress at the coast, is linked to the Lineykin- and Ekman- 
layer solutions. 



444 J .  8. Allen 

An attractive feature of the annulus solutions, concerning their possible 
oceanic relevance, is provided by the predicted nature of the upwelling circula- 
tion, as shown in figure 2. The upwelling fluid enters the surface layer in the corner 
near the vertical boundary. The inflow to the upwelling corner comes, however, 
through the Lineykin layer from regions away from the boundary. There is no 
involvement of the flow in a side-wall boundary layer. As a result, the predicted 
upwelling circulation looks very reasonable compared with what one might 
expect in a coastal upwelling zone, over a continental shelf, in the ocean. This 
circulation should be contrasted with that which would exist in a finite-depth 
two-dimensional model with a homogeneous fluid. In  that case the upwelling 
fluid would come directly from an Ekman layer on the bottom in side-wall 
boundary layers of thickness E* and (for S < EB)EB. 

For an oceanic model with dimensional depth D, the condition (3.7), for the 
applicability of the infinite-depth approximation, reduces to 

min [m(D/L) (A,/A,)B, n(D/L)g*] 2 (5.2) 

where L is the largest relevant horizontal scale (half wavelength) of the applied 
driving. The appropriateness, for the oceanic case, of (5.2) and of the condition 

828 = (A,/AH)S 3 O ( i )  (5.3) 

is hard to estimate because of large uncertainties in the values of A,, AH and L. 
However, let us consider a particular upwelling region, for example that on the 
continental shelf off the coast of Oregon (see e.g. Collins et al. 1968), and try to 
make some estimates. Assuming that D = 200m = 2 x lo4 cm, N2 = 10-4s-2 
(corresponding to a change in density Ap/p N 2 x 10-3, over the distance D ) ,  
2C? = = lo4. If we assume that the eddy coeffl- 
cients are in the ranges A, = 106-10~cm2/s and A, = 10-102cm2/s and that 
L = 50km = 5 x 106cm, then we find that 

and (r = 1, we obtain 

j.r(D/L) (AH/Av)J w 39.7 - 1.26, 

m ( ~ / ~ ) S B  z 1-26, 

( w 1-10-3. 

We see that an assessment of the validity of the conditions (5.2) and (5.3) depends 
critically on the values chosen for A,, AH and L. The above numbers, if they are 
representative, show that the approximations are questionable for this case. 

It should be mentioned that the use of two-dimensional models, with uniform 
rotation, to study coastal upwelling is open to question. In  that connexion, the 
results, which concern upwelling, from linear theories of the circulation in a 
homogeneous ocean (Pedlosky 1968; Durance & Johnson 1970) might offer some 
guidance. In those models the p-effect is important because, although it does not 
affect the upwelling dynamics directly, it influences the nature of the interior 
flow so that the fluid required to balance the offshore transport in the surface 
Ekman layer is fed to the upwelling boundary layer uniformly over the depth. 
With uniform rotation the fluid can come directly from the bottom in a side-wall 
boundary layer. Another result from the homogeneous /3-plane models is that 
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the interior inflow of fluid, to the upwelling boundary layer, is geostrophically 
balanced by pressure gradients in the longshore direction (see also Garvine 197 1). 
This possibility is, of course, excluded in the two-dimensional models. The 
importance of these effects in more realistic flows, which include stratification, 
nonlinearities, realistic coastal bottom topography, etc., has not been determined. 
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